> 科技 >

全球观点:中国散裂中子源:“超级显微镜”带你探微格物

时间:2022-11-14 10:11:15       来源:今日科学

装置简介:

中国散裂中子源(CSNS)是我国首台、世界第四台脉冲式散裂中子源,是国际前沿基础研究和国家发展战略领域多学科交叉研究的大型平台。中国散裂中子源的成功建设,填补了国内脉冲中子源及应用领域的空白,技术和综合性能进入国际同类装置先进行列,显著提升了我国在相关领域的技术水平和自主创新能力,实现了强流质子加速器和中子散射领域的重大跨越,为物质科学、生命科学、资源环境、新能源等方面的基础研究和高新技术研发提供了强有力的支撑。

广东东莞大朗镇,松山湖科学城。


(资料图)

这里曾是一片荔枝林,如今坐落着一座“中子工厂”。

中国散裂中子源(CSNS),我国迄今为止已建成的单项投资规模最大的大科学工程。它的建成,使我国成为继英国、美国、日本之后,世界上第四个拥有脉冲式散裂中子源的国家。

前不久,中国散裂中子源二期工程组织了可行性研究报告评审。明年上半年,二期工程有望动工建设。

散裂中子源是什么,为什么被称为“国之重器”?

中国科学院高能物理研究所(以下简称中科院高能所)副所长、东莞研究部主任陈延伟打了个比方:“简单来说,散裂中子源就是一台‘超级显微镜’,其产生的中子如同‘探针’,可以清晰检测物质的内部结构。”

陈延伟介绍,作为当今人类深度探索微观世界的有力工具,散裂中子源广泛应用于新材料研发、关键零部件的性能检测等热门领域,为材料科学技术、物理学、化学化工、生命科学、新能源等基础研究和应用研究提供先进的科研平台,对满足国家重大战略需求和解决前沿科学诸多领域的瓶颈问题具有重要意义。

1 设备研制达到国际先进水平,核心设备国产化率达90%以上

中子,组成原子核的基本粒子之一。

中子有很多特质。它不带电,但有磁矩,能很好地帮助我们对磁性结构做研究;它穿透力强,具有非破坏性,能够原位地研究大的工程部件的残余应力和金属疲劳,为高端制造保驾护航;它对生命科学和能源领域极为重要的元素,如碳、氢、氧、氮等,都比较敏感;它跟原子核相互作用,能够区分同位素……

“这些特质,决定了中子在微观研究领域的不可替代性。”中科院高能所东莞研究部副主任、散裂中子源科学中心副主任金大鹏对记者说。

研究物质微观结构需要大量中子,这就要用到能安全、高效地产生中子的散裂中子源。

中国散裂中子源主要由三大部分构成:2台加速器,包括1台负氢离子直线加速器、1台快循环质子同步加速器;1个靶站;多台中子谱仪。此外,还有相应配套设施。

陈延伟介绍了其工作原理:将质子加速到16亿电子伏特,把速度相当于0.92倍光速的质子束当成“子弹”,去轰击原子序数很高的重金属靶。靶的原子核被撞击出质子和中子,科学家通过特殊的装置“收集”中子,开展各种实验。

建设中国散裂中子源的建议,始于上世纪九十年代末期关于中国高能物理发展战略的研究。此后,中国散裂中子源被列入国家“十一五”大科学装置建设计划。2006年,中国散裂中子源选址广东东莞。

2011年,中国散裂中子源开始正式建设。2017年8月,首次质子打靶,成功获得中子束流;2018年3月,正式建成;2018年8月,正式通过国家验收,投入运行。

散裂中子源装置庞大,设备部件繁多,工艺复杂。“建设散裂中子源,很多技术都需要从头探索。6年半时间就能建成,离不开关键核心技术的突破。”金大鹏介绍。

快循环质子同步加速器所用的25赫兹交流磁铁,在我国属首次研制。研制期间,遇到了超乎想象的技术难题。

铁芯和线圈振动开裂、涡流发热……如何解决这些经验之外的新问题?科研人员与合作单位联合攻关,最终依靠自己的力量研制出合格的磁铁。科研人员还创新提出了谐振电源的谐波补偿方法,解决了多台磁铁之间的磁场同步问题。

挑战接踵而至——

高功率靶要用到钨材,而钨材不耐冲刷,需要在其外包覆一层钽金属。怎样把钽做到足够薄,并提高钽和钨的结合力?

在零下253摄氏度左右低温下工作的液氢慢化器,其焊接都是难度极大的薄壁焊接,如何保证可靠性?

中国散裂中子源的建设过程,也是自主攻关掌握核心关键技术的过程。金大鹏介绍,25赫兹交流磁铁、高功率靶、液氢慢化器、中子探测器等多项关键核心技术突破以后,对其他领域的发展也产生了一定影响。

中国散裂中子源各项设备的批量生产在全国近百家合作单位完成。通过自主创新和集成创新,许多设备的研制达到国际先进水平,核心设备国产化率达90%以上,这不仅大大降低了装置成本,还有力提升了国内相关产业的技术水平和制造能力。

金大鹏举了个例子:由于工艺水平高、产品质量好,中国散裂中子源靶体部件的制造单位,成功中标了世界上第五台脉冲式散裂中子源——欧洲散裂中子源的靶体部件。

2 研发过程中的技术突破有望为肿瘤治疗带来重要技术革新

位于地下17米的加速器隧道里,排列着各种颜色、连接各种管线的复杂设备。

科研人员使用氢气产生负氢离子,并将它们在直线加速器里加速。当它们的能量达到8千万电子伏特时,将“飞奔”进入环形的快循环质子同步加速器。

一秒钟之内,就有25波负氢离子奔来。在这里,负氢离子将转变为质子,并通过不断“狂奔”、反复加速,将能量提高到16亿电子伏特,速度提升到0.92倍光速。接近光速的质子束被引出,去轰击钨靶,由此产生中子。

在加速器关键技术研发过程中,也产生了一些新技术成果,并已衍生出具体应用,开花结果。

利用中国散裂中子源的射频四极加速器技术突破,2020年8月,研究人员成功研制出我国首台具有完全自主知识产权的加速器硼中子俘获治疗(BNCT)实验装置,可用于癌症治疗研究。这为我国医用BNCT装置整机国产化和产业化奠定了技术基础,有望为肿瘤治疗带来重要技术革新。首台临床设备已在医院安装,预计2023年5月完成安装调试。

中国散裂中子源正式运行并向国内外科学家、工程技术人员、工业企业开放后,大科学装置的综合效应日益显现。

“中国散裂中子源在多个领域开展重大创新研究,包括对深海潜水器等大型工程部件进行残余应力和服役性能检测等,为国家急需的许多高性能结构材料攻关提供了关键技术平台。在磁性材料、纳米功能材料、高效催化剂、自旋电子学、有机太阳能薄膜电池、金属玻璃、高分子聚合物、生物大分子等国际前沿科技研究中,也取得一大批成果。”陈延伟说。

什么是残余应力?它是指在材料、部件加工、服役等过程中,保留在其内部的应力,可能导致工程部件的变形乃至失效。

深海潜水器的壳体是钛合金焊接的。下潜海底万米,要扛住巨大的海水压强,焊接的可靠性至关重要。

“我们对它的焊接模拟件进行检测,了解不同焊接工艺的残余应力参数,为壳体寿命预测、焊接工艺选择提供了关键数据支撑。”金大鹏说,高铁的车轮等大型高速运动工程部件将来也需要散裂中子源来验证其残余应力参数。

作为粤港澳大湾区首个重大科技基础设施,中国散裂中子源的建成,为国内科技工作者带来了研究物质的“利器”,特别是为港澳科学家提供了前所未有的便利。

香港大学黄明欣教授团队研发的超强超韧的“超级钢”,就是通过中国散裂中子源,来分析其成分、结构,验证了相关研究结果。

3 为前沿科学研究和国家重大需求提供先进研究平台

橙色、紫色、蓝色、浅蓝、浅绿……走进靶站谱仪实验大厅,一台台颜色各异的谱仪,以靶站为中心,宛如七色花的花瓣一般向外伸展排列。

中子产生后,经过慢化,通过中子通道被引入谱仪。

“中子在谱仪中和样品材料的原子核相互作用,产生散射、衍射、透射。”金大鹏解释说,中子就像派进去探查信息的侦察兵,我们可以根据它进去时的角度、能量,出来时的角度、能量等,经过测量,反推回去,研究样品的结构及动力学。

探微格物,中国散裂中子源为材料科学技术、物理学、化学化工、生命科学、新能源等基础研究和应用研究提供有力支撑。目前,中国散裂中子源已完成8轮开放运行,全球注册用户超过3900人,完成课题800余项。

伴随着国家重大战略部署的推进、新兴产业的发展以及国际前沿研究的需要,中国散裂中子源用户数量快速增长,申请使用装置的课题数快速增长。

中国散裂中子源面临“升级”。其实,一期工程设计已经预留了升级改造空间。根据国家“十四五”规划,中国散裂中子源的二期工程即将启动。

“中国散裂中子源一共规划有20条中子通道,能够建设22台中子谱仪。”金大鹏向记者介绍,目前共有5台谱仪已投入运行使用,其中包括一期工程国家投资建设的3台谱仪,还有与高校、研究机构合作建设的2台用户谱仪。另有6台不同类型的合作谱仪正在建设、调试中,其中4台预计今年年底将投入使用,满足更多用户的不同需求。

不同的谱仪,有不同的用途。

浅绿色的通用粉末衍射仪,主要用于研究物体的晶体结构和磁结构,现在也用于开展小部件的残余应力测试。

刚投入使用不久的大气中子辐照谱仪,已吸引国内不少高科技企业将自家产品送来测试。研究人员使用高通量的中子加速电子元器件出现问题的进程,从而推动工艺迭代,确保电子元器件与系统性能高度可靠。

即将在今年年底投入使用的工程材料应力衍射仪,可以在不破坏样品的情况下,对高铁的车轮、航空航天发动机叶片等设备的残余应力、金属疲劳数据进行研究,一方面为改进工艺提供参考,另一方面也可以评估出部件既能保证安全又能保证经济性的使用里程和时间。

金大鹏介绍,目前投入使用的谱仪多为通用型谱仪。围绕国家重大战略部署、新兴产业需求等,专门规划了一批新的谱仪。正在建设中的谱仪,还有专门用来研究新能源电池的。

二期工程建成后,中国散裂中子源的谱仪数量将增加到20台,覆盖广大用户各方面研究领域。同时,加速器打靶束流功率将从现在的140千瓦提高到500千瓦。这意味着,同等时间能产生更多中子,不仅能有效缩短实验时间,还能使实验分辨率更高。

“新的谱仪和实验终端建成后,中国散裂中子源的设备研究能力将大幅提升,实验精度和速度将大大提高,能够测量更小的样品、研究更快的动态过程,为前沿科学研究、国家重大需求和国民经济发展提供更先进的研究平台。”陈延伟说。

标签: 残余应力 投入使用

消息推送